предыдущая главасодержаниеследующая глава

Хризопраз

 Яблочно-зеленый мелкокристаллический кварцевый или халцедоновый агрегат, окрашенный неразличимыми 
 простым глазом включениями зеленых никелевых минералов, наиболее часто - гарниеритом. 
 
Из современных учебников минералогии
 
 В прошедшем (18-м) столетии хризопрас был любимым камнем; вставки из него тогда осыпали бриллиантами 
 и сам камень ценили довольно дорого. Фридрих Великий постоянно носил в перстне хризопрас и даже 
 украсил им корону Сансуси. 
 
Пыляев М. И. Драгоценные камни, СПб., 1888, с. 368

На знаменитое месторождение хризопраза Сарыкул-Болды в Центральном Казахстане мы ехали, не зная дороги. Местные жители показали нам развилку на главном шоссе и сказали: "Дорога прямая, километров через 20 будет кош, там обычно бывают чабаны; они вам покажут. Ну, а если у коша никого не встретите, то езжайте правой дорогой, там недалеко, не более 10 км. Месторождение на верху холма, вы его сразу увидите". Поехали. В коше стояла большая бригада студентов-животноводов, но ни один из них не знал местности. Пришлось ехать по правой дороге. Вскоре показалось несколько холмов, крайне интересных по своей морфологии. Все они были примерно одной высоты и с плоскими вершинами. Холмы эти - столовые горы - останцы первоначального рельефа местности. Когда-то здесь была равнина, и именно ее остатками являются плоские вершины гор; затем произошел подъем местности как раз на высоту холмов. Позднее реки и ручьи начали размывать эту высокую равнину, сначала образовав ущелья, которые, постепенно расширяясь, создали ту новую, более низкую равнину, по которой ехали мы. И лишь холмы - немые свидетели прошлого - возвышались над этой молодой равниной.

Когда мы увидели холмы, стали думать, какой же из них Сарыкул-Болды. Остановили взгляд на самом большом. Подъехали, нигде признаков жилья. Кажется, на склоне есть разведочные канавы, а следов добычи не видно; объехали весь холм, однако ничего не нашли. Наверное, на поиски пришлось бы потратить еще много часов, но тут нам повезло - в степи показался чабан на лошади. Он-то и рассказал, что месторождение находится на соседнем, самом маленьком холме, поселок же расположен в ложбине между двумя холмами.

Склоны холмов гладкие; на них попадаются отдельные глыбы камня, а внизу видны крупные скалы. Такая картина говорит о том, что на вершинах холмов расположены мягкие глинистые, легко размывающиеся породы, а у подножия - плотные. Сразу можно было предположить, что на древней равнине была сформирована кора выветривания, остатки которой видны и сейчас в виде бурой глины. Впоследствии эта догадка полностью подтвердилась.

Кора выветривания - интересное и геологически очень важное образование. Рождается она в результате очень длительного воздействия на горную породу дождевой воды, кислорода воздуха и почвенных растворов. Такое воздействие не выдерживает ни одна силикатная горная порода. Большинство горных пород превращается при этом в различные глины, постепенно книзу переходящие в свежие породы. Мощность древней коры выветривания может быть довольно большой - до 100 м.

Подножие холма, строение которого хорошо просматривалось непосредственно около поселка, было сложено ультрабазитами - глубинной породой, содержащей примерно по 45% окиси магния и окиси кремния, 10% окиси железа и некоторых других химических веществ, в частности окиси хрома и окиси никеля. В кислых породах, таких, как граниты, этих окислов нет. (Считается, что хром и никель распространены в породах, залегающих на больших глубинах.) Количество окиси хрома и окиси никеля в свежих ультрабазитах относительно мало и не представляет интереса для промышленности. Окись хрома может экономически выгодно добываться только в том случае, если содержание ее в руде достигает 30-40%; в обычных ультрабазитах ее лишь 3-4%. Максимальное промышленное содержание никеля в силикатных рудах должно составлять 1-1,5%. В ультрабазитах его всего 0,2-0,5%, поэтому сами они не могут служить рудой никеля.

Ультрабазиты - черно-зеленая непрозрачная порода, в которой уже простым глазом можно увидеть кристаллы оливина и пироксена, залегающие в серпентиновой основной массе.

Поднимаясь вверх по склону холма, первое, что удается заметить, это резкое изменение характера ультрабазита - в них полностью исчезают оливин и пироксен. Вся порода имеет вид сплошного серпентина, но в отличие от серпентина свежей породы он гораздо однороднее и сильнее просвечивает. Химический анализ показывает, что в частично измененной породе много меньше магния и больше кремния, чем в неизмененных ультрабазитах. Минерал, слагающий эту породу, издавна назвали керолитом. Что это такое, до сих пор хорошо никто не знает. Не помогли пока в расшифровке его природы и такие точные методы исследования, как рентген и электронная микроскопия. Удалось лишь показать, что керолит - это не один минерал, а смесь; с помощью рентгеновского анализа определили серпентин и тальк, но увязать эти данные с химическим составом пока не удается.

Куда же девается магний из ультрабазита при переходе его в керолит? Частично он, вероятно, выносится растворами; другая его часть соединяется с углекислотой, приносимой растворами, выделяется в трещинках породы в виде жил магнезита. Присутствие керолита и жил магнезита - характерная особенность нижней части древней коры выветривания.

Еще выше по склону наблюдается переход керолита в новую породу. Если керолит плотный, то сменяющий его так называемый нонтронит - уже мягкая зеленовато-бурая глина; она разминается между пальцами и размокает в воде. Химически для нонтронитовой глины характерно очень малое содержание магния. Но в ней концентрируется все железо, бывшее в ультрабазите, и весь никель. Так как из ультраосновной породы в процессе ее выветривания и образования нонтронитовой глины выносится очень большое количество материала, то происходит относительное обогащение глины остающимися элементами. В нонтронитовых глинах при их детальном исследовании можно распознать ряд самостоятельных минералов; кроме преобладающего собственно нонтронита - железистой глины, здесь встречаются и самостоятельные силикатные (содержащие кремний) минералы; в первую очередь это гарниерит - ярко-зеленый глиноподобный минерал, выделяющийся по трещинкам нонтронита.

Еще выше нонтронит переходит в охру - водную окись железа бурого цвета. Желтая охра, которая применяется в малярном деле, - это смесь мелкодробленой бурой охры с глиной. Охры кор выветривания - бурые, иногда красноватые породы, с содержанием железа до 40-50% и больше. В ряде мест они используются как железная руда. При образовании охр нонтронит - глинистый минерал, содержащий много окиси кремния, - разлагается. Окислы железа образуют свои остаточные минералы, слагающие охру, а окись кремния переходит в раствор и частично выносится, а частично выделяется в трещинах и пустотах породы в низах зоны охр. Выше указывалось, что трещинки породы внизу в нонтронитовой зоне были заполнены магнезитом. Среди охр магнезит оказывается неустойчивым, он растворяется в циркулирующих здесь более кислых, чем внизу, растворах, и на его место осаждается окись кремния. Частично эти новообразованные кремнистые минералы - опал, халцедон или даже мельчайшие кристаллики кварца - захватывают и обволакивают зерна магнезита и тем самым защищают их от растворения. Магнезит исключительно белый минерал, поэтому в тех случаях, когда в новообразованном агрегате кремниевые минералы встречаются совместно с магнезитом, получаются весьма эффектные ярко-белые кремниевые агрегаты (халцедона или опала), по виду напоминающие кость, но обладающие гораздо лучшим блеском при полировке. Такой белый халцедон или опал называют кахолонгом. В древности он пользовался большой популярностью и ценился очень высоко. Я его находил в корах выветривания на ультрабазитах и здесь, в Сарыкул-Болды, и в других месторождениях Казахстана и Урала. Однако хороший кахолонг - большая редкость, постоянной добычи его нет нигде в мире.

Выше отмечалось, что в низах зоны охр из циркулирующих здесь растворов выделяются самостоятельные зеленые никелевые минералы. В ряде мест физико-химические условия, благоприятные для выделения никелевых и кремниевых минералов, совпадают и в трещинках среди охры образуются жилки, где одновременно выделяется кварц, опал или чаще всего халцедон и ярко-зеленые никелевые минералы. Халцедон и другие кремниевые минералы бесцветны и прозрачны, зерна их весьма мелкие, и между ними выделяются тончайшие пленки никелевых минералов, придающих всему камню яркий яблочно-зеленый цвет. Такой зеленый халцедон (или мелкий кварц) издавна получил название хризопраза. Простым глазом и даже в оптическом микроскопе строение хризопраза разглядеть невозможно. И только с помощью электронного микроскопа удалось выявить его природу. Такой зеленый хризопраз прекрасно полируется и используется для вставок в кольца, броши, серьги. Особенно красив он в кольцах с мелкими алмазами.

Рис. 3. Характер распространения хризопразовых прожилков в силицифицированных серпентинитах (по П. В. Осипову, 1975). 1 - почвенно-растительный слой; 2 - делювиально-элювиальные отложения; 3 - силицифицированные серпентиниты; 4 - тальково-лимонитовые породы; 5 - тектонические нарушения; 6 - прожилки хризопраза
Рис. 3. Характер распространения хризопразовых прожилков в силицифицированных серпентинитах (по П. В. Осипову, 1975). 1 - почвенно-растительный слой; 2 - делювиально-элювиальные отложения; 3 - силицифицированные серпентиниты; 4 - тальково-лимонитовые породы; 5 - тектонические нарушения; 6 - прожилки хризопраза

Каждая жилка хризопраза протягивается на метр-два, редко больше, но встречаются они зонами; иногда параллельно проходят две или несколько жилок хризопраза. Вне зоны развития хризопраза обычны кварцевые или халцедоновые жилки.

Вот тут, около хризопразовых жилок, и развернулись наши споры. Основных доказательств, которые приводили ведущие добычу этого прекрасного минерала в пользу гидротермального генезиса, было три: во-первых, в результате проведенных так называемых палеотемпературных измерений для хризопраза была получена температура 60-70°; во-вторых, выше в результате выветривания хризопраз переходит в мелкую кварцевую муку; в-третьих, среди охр и глин, где залегают жилки хризопраза, находятся такие гидротермальные минералы, как тальк.

Палеотемпературные измерения основывались на изучении включений в кристаллы - однородного горячего раствора. Охлаждаясь, он разделяется на жидкость и газ. Если вновь нагреть такое двойное включение, оно станет однородным; газ опять растворится в жидкости и включения гомогенизируются. Происходит это, как считают, при температуре включения жидкости в кристалл. Этот метод, однако, обладает очень малой точностью: изменчив состав раствора, газ может быть захвачен вместе с раствором, не исключен перегрев и т, д. В результате ошибка в 40-50° вполне вероятна. Если бы температуры гомогенизации составляли 200-300° С, то разговор о горячих (термальных) водах был бы правомерен, а здесь были получены данные в пределах ошибки и могут относиться как к нормальным, так и к термальным водам.

Второе доказательство также несущественно. Кварцевые жилы встречаются только в низах горизонта охр, в верхних же частях кварца нет, там осталась лишь одна охра, а кварцевые жилки и кварц, выделившиеся в порах охры, полностью растворились. Естественно поэтому, что жилки хризопраза, залегавшие среди охр, частично растворились, переходя по периферии в кварцевую муку. Это обычный процесс в верхах горизонта области развития того или иного минерала в коре выветривания.

Приуроченность хризопраза к низам зоны охр в коре выветривания объяснила нам, почему месторождение минерала было открыто и разрабатывается на одном из самых маленьких холмов. В тех случаях, когда кора выветривания сохранялась полностью, на верху холма сохраняется мощный горизонт охры, и тогда найти под ним хризопраз практически невозможно. На Сарыкул-Болды, где верхняя часть горизонта охр в значительной мере смыта, поиски хризопраза очень облегчены.

Неосновательно и третье доказательство. Такие минералы, как тальк, который, как считают, образуется в результате гидротермального воздействия, возникают еще в ультрабазитах и в процессе выветривания сохраняются без какого-либо изменения.

Таким образом, все доказательства гидротермального генезиса легко получают объяснение и с точки зрения образования хризопраза в коре выветривания. Однако решающим признаком, говорящим в пользу последней, является его залегание в определенной зоне коры. Книзу хризопраз должен исчезнуть; его также не должно быть в тех охрах, где нет других кремнистых выделений. Характерно также и то, что хризопраз встречен только на вершине холма. В районе месторождения кора выветривания развита регионально в верхних частях всех окрестных холмов. Наши оппоненты подтвердили, что книзу хризопраз действительно не распространяется.

Хотя хризопраз считается редким поделочным камнем, в литературе указывается довольно много его месторождений. Еще в 1936 г. известный минералог П. Драверт писал о частых находках хризопраза вместе с силикатными никелевыми рудами коры выветривания в Казахстане и Сибири. Причиной редкости хризопраза является именно приуроченность его к определенной зоне коры выветривания; как только зона выработана, месторождение хризопраза прекращает свое существование.

Довольно много этого замечательного поделочного камня на мировой рынок поставляла Австралия. В 60-х годах на северо-востоке страны разрабатывалось богатое месторождение Мальборо-Крик. Минерал здесь также был приурочен к латеритам - железистой коре выветривания, но здесь она гораздо моложе и менее мощная, чем в Европе и Азии. Мощность латеритов в Мальборо-Крик около 70 м. Вверху располагаются силицифицированные железистые породы мощностью от 14 до 30 м. Здесь встречается лишь низкокачественный хризопраз, зато в подстилающей зоне между этими разрушенными породами и идущими ниже серпентинами можно обнаружить прекрасные минералы. К концу 70-х годов это месторождение было практически выработано.

В эти же годы хризопраз добывался на месторождениях штатов Южная и Западная Австралия. В Западной Австралии в 1973 г. было добыто более 122 т высококачественного материала. Хризопраз и здесь приурочен к латеритам, развитым на поверхности ультрабазитов, выходящих в самом центре Австралии, как раз там, где сходятся границы трех штатов: Северной Территории, Южной и Западной Австралии.

Найти хризопраз весьма трудно, и я не уверен, удастся ли вам, дорогой читатель, обнаружить его, даже если вы попадете на кору выветривания гипербазитов. Гораздо чаще попадается кахолонг, его иногда трудно отличить от магнезита, но некоторый опыт легко позволит вам это сделать. На магнезите остаются царапины от ножа, а кахолонг, наоборот, - оставляет след на ноже.

предыдущая главасодержаниеследующая глава










Rambler s Top100 Рейтинг@Mail.ru
© Карнаух Лидия Александровна, подборка материалов, оцифровка; Злыгостева Надежда Анатольевна, дизайн;
Злыгостев Алексей Сергеевич, разработка ПО 2008-2019
При копировании материалов проекта обязательно ставить ссылку на страницу источник: 'IzNedr.ru: Из недр Земли'