предыдущая главасодержаниеследующая глава
Подгруппа серпентина

Кроме серпентина с его разновидностями и ревдинскита, здесь же опишем сложную по составу группу магнезиально-глиноземистых гидросиликатов, известную под названием палыгорскита.

Cepпeнтин - Mg6[Si4O10][OH]8, или 3MgO•2SiO2•2H2O. "Серпентариа" по-латыни - змеевидный (серпентиновые породы иногда имеют некоторое сходство по пятнистому рисунку, особенно в полированных образцах, со змеиной кожей). Отсюда и русское название - змеевик, относящееся, правда, к горной породе - серпентиниту, состоящему почти сплошь из серпентина. Раньше употреблялось название офит (с греческого - змея); теперь это название, иногда измененное в серпофит, сохранилось за опаловидной или гелеподобной, богатой водой разностью серпентина, обладающей восковым блеском и однородной окраской (бледнозеленой, желтовато-белой, реже буровато-зеленой). Эта же разность называлась благородным змеевиком; по оптическим и другим свойствам представляет типичный гель.

Листоватая разность, похожая на хлорит, но обладающая меньшим совершенством базальной спайности и хрупкостью, носит название антигорита (долина Антигорио, близ Пьемонта в Италии). О ней упоминалось при описании группы хлоритов.

Химический состав. MgO 43,0%, SiO2 44,1 %, H2O 12,9%. Соотношения компонентов несколько колеблются, особенно в разностях, аналогичных типичным коллоидам, более богатым водой (обычно до 13-17%). В виде примесей почти всегда присутствуют FeO, Fe2O3 и NiO.

Сингония не известна. В хорошо образованных кристаллах никогда не встречается. Явнокристаллической разностью является лишь антигорит, принадлежащий, вероятно, к моноклинной сингонии. Кристаллическая структура. Основное отличие кристаллической структуры антигорита от таковой каолина заключается в том, что в антигорите характеризуюшие слоистую структуру пакеты своими "бруситовыми" слоями обращены друг к другу (см. рис. 340), т. е. разделяются парными листами гидроксильных ионов. Агрегаты. Обычно распространен в плотных массах, часто смятых, со следами скольжения, иногда с тончайшими прожилками асбеста или прожилками офита. В антигоритовых серпентинитах редко наблюдается на глаз пластинчатое строение.

Цвет темнозеленый в тонких осколках, бутылочно-зеленый различных оттенков до зеленовато-черного, иногда и буровато-зеленый. Офит часто имеет бледную оливково-зеленую окраску с желтым оттенком. Антигорит серый, нередко со слабым синеватым оттенком. Блеск стеклянный, жирный, у офита восковой.

Твердость обычного серпентина 2,5-3, антигорита 3,5, офита 2. Спайность наблюдается только у более крупнопластинчатых разностей антигорита: по {001} совершенная и менее совершенная по {01O}. Отщепляемые листочки ломки. Уд. вес 2,5-2,7.

Диагностические признаки. Макроскопически серпентиновые массы узнаются сравнительно легко по характерным темнозеленым оттенкам, невысокой твердости, зеркалам скольжения, жирному блеску в изломе и т. д. Антигоритовые серпентиниты обладают характерными серыми оттенками, исключительной вязкостью, ощущаемой при обработке образцов молотком, более высокой твердостью по сравнению с обычными серпентинитами.

П. п. тр. с трудом оплавляются по краям. Разлагаются в HCl и H2SO4. В закрытой трубке выделяют много воды.

Происхождение. Серпентиниты образуются в процессе массового гидротермального изменения ультраосновных, главным образом оливинсодержащих пород (дунитов, перидотитов и др.). Легче всех замещению серпентином подвергаются оливин и энстатит, затем диопсид, роговые обманки и др.

В процессе выветривания серпентинизированные породы постепенно карбонатизируются и разлагаются, особенно сильно в условиях субтропического и тропического климата. При этом в виде остаточных продуктов на поверхности накапливаются землистые гидроокислы железа. Магнезия, связываясь с углекислотой воздуха, в виде бикарбонатов уходит в нижние горизонты зоны окисления. Кремнезем переходит в коллоидный раствор и выделяется в виде опала, нередко замещающего коренные породы. Точно так же никель в виде гидросиликатов подвергается некоторому переносу и отлагается в более низких горизонтах.

Практическое значение. Плотные, красиво окрашенные разности серпентинита иногда употребляются в качестве облицовочного поделочного камня, пригодного для изготовления разных изделий (шкатулок, пепельниц, чернильных приборов и т. д.). Более бедные кремнеземом разности (серпентинизированные дуниты) с небольшими добавками магнезита могут служить сырьем для изготовления высокосортных огнеупорных форстеритовых кирпичей для черной металлургии. Может являться сырьем также для химической промышленности при получении соединений магния.

На перечислении месторождений останавливаться не будем. Укажем лишь, что серпентинитовые массивы широко распространены на всем протяжении Урала, на Северном Кавказе, в Закавказье (Армения) и в ряде мест Сибири и Казахстана

Хризотил-асбест. В сущности представляет собой тонковолокнистую разновидность серпентина. Первоначально был назван просто хризотилом. "Хризос" по-гречески - золото, "тилос" - волокно. Минерал иногда действительно имеет золотистый отлив. Обычно называют асбестом или хризотил-асбестом в отличие от роговообманковых асбестов.

Химический состав такой же, как серпентина. MgO 43,0%, SiO2 44,1%, H2O 12,9%.

Рис. 339. Серия параллельных 'прожилков' хризотил-асбеста
Рис. 339. Серия параллельных 'прожилков' хризотил-асбеста

Сингония, согласно рентгенометрическим исследованиям, вероятно, моноклинная. Агрегаты. На фоне сплошной массы серпентина асбест отчетливо выделяется в виде "прожилков" (рис. 339), в которых волокна асбеста ориентированы обычно перпендикулярно к стенкам. Длина волокон колеблется от десятых долей миллиметра до 20-25 мм, иногда до 50 мм, изредка достигая 160 мм.

Цвет хризотил-асбеста зеленовато-желтый с золотистым отливом, иногда белый, редко бурый, в распушенном виде-снежно-белый. Блеск шелковистый.

Твердость 2-3. Расщепляется на тончайшие эластичные, очень прочные волокна до 0,0001 мм и меньше толщиной (т. е. поперечные размеры их достигают величины дисперсных фаз в коллоидах). Прочие свойства. Обладает огнестойкостью и щелочеупорностью. Плохой проводник тепла, электричества и звука.

Диагностические признаки. Узнается легко по параллельноволокнистому строению и эластичности отдельных волокон. От амфиболовых асбестов отличим по оптическим свойствам (двупреломлению) и по отношению к кислотам.

П. п. тр. не плавится, белеет. В HCl, в отличие от амфиболовых асбестов, растворяется, оставляя волокнистый скелет кремнезема. Разлагающее действие оказывает также морская вода.

Происхождение. Общие условия образования те же, что и серпентина, т. е. главным образом в связи с гидротермальным изменением богатых магнезией ультраосновных пород. Однако хризотил-асбест встречается несравненно реже обычных серпентиновых масс, что указывает на несколько особые условия его образования.

Хризотил-асбест наблюдается среди жилообразных полос или неправильной формы участков сплошного серпентина, отличающегося по внешнему виду от вмещающих серпентинизированных пород. Механизм образования хризотил-асбеста еще не совсем ясен. По всей вероятности, сплошные массы серпентина в момент своего образования представляли собой гель, в котором в процессе усыхания при сокращении массы могли возникать трещины разрыва. В этих трещинах по мере расхождения их стенок и могли образоваться тонковолокнистые массы со строго параллельной ориентировкой волокон по направлению растяжения, независимо от того, возникла ли одна прямая трещина или одновременно целая серия более мелких трещин. Строго параллельную волокнистость можно сравнить с тем явлением, которое возникает в каучуковом клее при попытке слегка отогнуть свежеприклеенную пластину (молекулы каучука приобретают явно ориентированное волокнистое направление и характерный шелковистый блеск). В таком случае питающей средой для растущих волокон хризотил-асбеста должна была являться сама вмещающая серпентиновая коллоидальная масса.

Практическое значение. Асбест своими необычайными свойствами обратил на себя внимание человека еще в глубокой древности. Повидимому, из асбеста давно уже научились делать пряжу и ткани.

В настоящее время асбест используется в различных отраслях промышленности. Из асбестового волокна длиной больше 8 мм в текстильной промышленности машинным способом изготовляют ткани для огнестойких костюмов, театральных занавесов, различных фильтров, мало изнашивающихся автомобильных тормозных лент и всевозможных асборезиновых изделий. Короткое волокно (2-8 мм) в виде примеси (до 15%) к цементу идет на изготовление огнестойких прочных и легких кровельных материалов, асбоцементных труб, картона, бумаги для тепловой изоляции и различных электроизоляционных материалов. Мелкое волокно используется для различных теплоизоляционных прокладок (асбестита и пр.), асбестовых огнестойких красок, обмазки паровых котлов, штукатурки и т. д.

Отходы обогатительных фабрик могут быть использованы в химической промышленности и в сельском хозяйстве в качестве удобрения для некоторых культур (например свекловицы).

Месторождения. В СССР Баженовское месторождение хризотил-асбеста расположено к северо-востоку от г. Свердловска. Асбестоносные серпентиниты возникли среди перидотитов в виде сети переплетающихся полос, вытянутых в меридиональном направлении на несколько километров. В том же направлении следуют жилы диорит-аплитов и кварцевых порфиров, в контакте с которыми серпентиниты сильно смяты, оталькованы и хлоритизированы. В парагенезисе с хризотил-асбестовыми жилами и прожилками находятся сплошной серпентин, офит, иногда карбонаты, тальк, брусит и др. Этого же типа месторождения известны в Алапаевском, Режевском, Красноуральском и других районах Урала, а также в серпентинитовом поясе Восточных и Западных Саян.

За рубежом следует отметить крупные месторождения хризотил-асбеста в провинции Квебек в Канаде, затем издавна известное, еще со времен Плутарха, месторождение на о. Кипр в Средиземном море и месторождение Шабани в Ю. Родезии.

Ревдинскит - (Ni,Mg)6[Si4O10][OH]8, или 3(Ni,Mg)O•2SiO2•2H2O. Название дано по месту открытия: в Ревдинском районе на Среднем Урале (1867). К ревдинскиту по существу относится коллоидальная разность этого минерала, аналогичная серпентину.

Позднее, в 1908 г., была открыта явнокристаллическая разность этого же состава. Названа она непуитом (также по месту нахождения - г. Непуи в Новой Каледонии).

Химический состав аналогичен серпентину, с той лишь разницей, что в ревдинските (непуите) содержится в гораздо более значительных количествах NiO, нередко преобладая над MgO.

Сингония моноклинная. Рентгенометрические исследования непуита показывают большое сходство его с кристаллической структурой минералов группы каолинита. Облик кристаллов. Непуит встречается в мелких червеобразных кристаллах (как каолинит). Чаще распространен в виде чешуйчатых агрегатов. Ревдинскит наблюдается в скрытокристаллических плотных порошковатых и землистых массах.

Цвет от бледнозеленого с голубоватым оттенком (цвет бирюзы) до густозеленого или серовато-зеленого с желтоватым оттенком. Блеск кристаллических разностей перламутровый (на плоскостях спайности), а у коллоидных разностей-жирный, восковой, матовый. Для разности с отношением Ni:Mg = 3:7 показатели преломления: Ng = Nm = l,56, Np=1,53.

Твердость 2-2,5. Спайность совершенная по {001}. Уд. вес 2,5-3,2 (зависит от содержания никеля).

Диагностические признаки. Непуит макроскопически узнается по чешуйчатым и мелкопластинчатым хлоритоподобным агрегатам, имеющим обычно бледную голубовато-зеленую окраску.

П. п. тр. не плавится или плавится с трудом. При прокаливании на угле в окислительном пламени буреет, в восстановительном становится бархатно-бурым. В закрытой трубке выделяет много воды. В горячей HCl разлагается с выделением слизистого кремнезема. Реакция на никель с диметил-глиоксимом, а также перл буры весьма характерны.

Происхождение. Ревдинскит встречается исключительно в коре выветривания массивов ультраосновных изверженных пород, содержащих бедные никелем силикаты магния (оливин, энстатит, серпентин и др.). Наблюдались случаи псевдоморфоз ревдинскита по обломкам серпентинита с со-хранением его текстурных особенностей. Это говорит о том, что ревдинскит образуется метасоматически, путем вытеснения никелем магния из кристаллической решетки. Источником никеля, очевидно, являются просачивающиеся воды, несущие этот элемент в виде каких-то соединений, образующихся в верхних частях коры выветривания в процессе распада первичных минералов ультраосновных пород.

Практическое значение. Ревдинскит вместе с другими гидросиликатами никеля входит в состав важных в промышленном отношении никелевых руд.

Месторождения. Ревдинскит встречается в довольно значительных количествах в Ревдинском и Уфалейском районах (Средний Урал) в месторождениях силикатных руд никеля. Кристаллические разности были обнаружены главным образом в делювии серпентинитов, заполняющих карстовые впадины среди известняков на границе с массивами ультраосновных пород (в Тюленевском месторождении). Установлен также в Xалиловских и Аккермановском месторождениях (Ю. Урал).

Палыгорскит-m2MgO•3SiO2•4Н2O•nАl2O3•4SiO2•5H2O. Состав переменный. Согласно данным исследований А. Е. Ферсмана, устанавливаются широкие колебания в отношениях между Mg и Al, начиная с разностей с сильным преобладанием содержаний MgO над Al2O3 и кончая минеральными видами с обратными отношениями этих компонентов. Богатые Al2O3 разности с отношением Al: Mg = 1:1 называются палыгорскитами, бедные, приближающиеся по составу к сепиолиту (2MgO•3SiO2•2H2O)- пилолитами. Часть Al, кроме того, замещается Fe•••.

Для всех этих разностей весьма характерны спутанноволокнистое строение массы, устанавливаемое иногда под микроскопом, а также оригинальные физические свойства, нашедшие свое отражение в таких старых названиях, как горная кожа, горная пробка, горное дерево (похожи на обломки сухой разложившейся древесины), горное мясо и др. Вследствие высокой пористости эти вещества обладают очень малым объемным весом и легко плавают на воде.

Цвет белый, иногда с желтоватым оттенком или серый с желтоватым или буроватым оттенком. Nm около 1,55. Твердость 2-2,5. Отщепленные тонкие плоские куски при деформации легко гнутся. Уд. вес 2,1-2,3. В сухом состоянии поглощает много воды. П. п. тр. плавится в пузыристое молочное стекло. В горячей H2SO4 разлагается с выделением скелета SiO2. При нагревании до 220° постепенно теряет H2O (до 15%), затем отдача воды прекращается и вновь наступает в интервале 370-410° (последние 5-6%).

Встречается сравнительно редко. Образуется чаще всего при выветривании относительно богатых магнезией горных пород, часто в трещинах, наподобие плотных листов картона. В виде гнезд и неправильных пластообразных залежей образуется и в осадочных горных породах.

Если устанавливается в значительных массах, то может найти применение как тепло- и звукоизоляционный материал в строительном деле для перегородок и других целей.

У нас в Союзе в относительно больших количествах встречается по берегам рек в ряде мест Средне-Волжского края, Горьковской области, Татарской АССР (Тетюшинский район), на Украине (Коростеньский, Бердичевский и другие районы), в Крыму (д. Курцы в Симферопольском районе), на Северном Кавказе по притокам р. Малки, в Западной Сибири (в Кузнецком Алатау) и в других местах.

предыдущая главасодержаниеследующая глава
















Rambler s Top100 Рейтинг@Mail.ru
© IZNEDR.RU, 2008-2020
При использовании материалов сайта активная ссылка обязательна:
http://iznedr.ru/ 'Из недр Земли'
Поможем с курсовой, контрольной, дипломной
1500+ квалифицированных специалистов готовы вам помочь