предыдущая главасодержаниеследующая глава

Резервы железа

Красные кровяные шарики - эритроциты живут всего около двух месяцев, затем они разрушаются и заменяются новыми. В то же время железо, которое содержится в эритроцитах (в форме гемоглобина), практически не выводится из организма. Человек получает очень немного железа с пищей, поэтому создается впечатление, что железо совершает в организме какой-то круговорот. Следовательно, должно существовать депо - "склад", предназначенный для хранения соединений железа, уже использованных ранее для создания гемоглобина и теперь дожидающихся, когда они снова понадобятся.

Ферритин. Надо иметь в виду, что ионы железа(III) не безвредны - в свободном (т. е. гидратированном) состоянии они обладают токсическими свойствами. Железо в такой степени окисления сохраняется в организме лишь после предварительного обезвреживания.

В 1937 г. из селезенки лошади был получен железосодержащий белок, названный ферритином и оказавшийся тем самым веществом, которое и сохраняет ионы железа (III) в нетоксичной форме. Позже выяснилось, что ферритин встречается не только в органах животных, но и у растений и даже у грибов.

У человека приблизительно 1/4 всего железа, совершающего круговорот, находится в форме ферритина, т. е. в депо, а около 3/4 - в гемоглобине крови.

В ферритине соединения железа связаны с белком и не проявляют токсичности; освобождение железа из ферритина сопряжено с восстановлением иона Fe3+ до степени окисления +2. Молекулярная масса ферритинового белка равна 450000, а у некоторых видов достигает 900000, иначе говоря, очень велика; ферритин окрашен в красно-коричневый цвет и содержит до 4500 атомов железа на молекулу белка.

Ферритин представляет собой белковые частицы, внутри которых, закутанные в полипептидные цепи, находятся ядра, или мицеллы, состоящие из сложных комплексов гидроксида и фосфата железа. Предполагают, что их состав можно приблизительно выразить формулой: (FeO-OH)8*(FeO-ОРО3Н2).

Состав белковой части ферритина в настоящее время известен. В этом белке много остатков глутаминовой кислоты, серина и лейцина, а также аспарагиновой кислоты. Как часто наблюдается у белков, молекула ферритина сложена из меньших по размеру субъединиц; формой она напоминает тутовую ягоду - 20 или 24 небольшие сферические частицы окружают центральное ядро, состоящее из соединений железа. Имеются данные, свидетельствующие о кристаллическом строении ядра; сам ферритин также можно получить в кристаллической форме.

Трансферрины. Ферритин не мог бы успешно выполнять свои функции, если бы не существовало специальных средств доставки ионов железа(III) к клеткам (называемым ретикулоцитами), в которых происходит образование гемоглобина. Дело в том, что при тех значениях кислотности, которые характерны для физиологических условий (рН около 7), ионы железа(III) существуют в виде гидроксида; растворимость его очень мала, и поэтому концентрация ионов железа(III) в растворе, находящемся в равновесии с гидроксидом, составляет ничтожно малую величину, порядка 10-14 моль/л. Из раствора такой концентрации очень трудно "вылавливать" ионы железа. В сыворотке крови, в яичном белке, в молоке, в желудочном соке и других жидкостях и тканях организма были найдены особые белки, отличающиеся способностью активно связывать железо в форме ионов Fe3+. Эти белки получили общее название трансферринов ("переносчики железа"); некоторые ученые делят их на классы: лактоферрины (содержатся в молоке), кональбумин (из яичного белка), сывороточный трансферрин (из крови) и др. Их белковые составные части немного отличаются друг от друга (особенно по содержанию гистидина и аргинина). Молекулярные массы трансферринов лежат в пределах от 77100 до 82000. Эти белки не имеют субъединиц и представляют собой частицы, состоящие из одной полипептидной цепи.

Каждая молекула трансферрина связывает два иона железа(III), причем получается продукт красного цвета. Было доказано, что в реакции связывания принимает участие ион бикарбоната, а ионы железа вытесняют шесть ионов водорода на одну молекулу белка. Поэтому реакцию можно схематически представить так:

Каждая молекула трансферрина связывает два иона железа(III)
Каждая молекула трансферрина связывает два иона железа(III)

Предполагается, что ион бикарбоната увеличивает прочность связи между ионом железа и белком трансферрина. Самым замечательным свойством трансферрина является то, что этот белок "знает", по какому адресу надо доставить ионы железа. Каким-то образом трансферри-новые частицы отличают ретикулоциты от всех других клеток и отдают железо именно клеткам, производящим гемоглобин.

Сначала, по-видимому, трансферрин прочно связывается (адсорбируется) на поверхности ретикулоцита, затем связь между ними упрочняется, и железо переносится в клетку. Возможно, что повышение прочности связи и сопровождается внедрением трансферрина внутрь клетки. Прочность связи ретикулоцит - трансферрин зависит от содержания железа в последнем. Как только железо отдано, связь сразу ослабляется, и белок трансферрина выходит из клетки.

Почти полмиллиона молекул трансферрина может быть размещено на поверхности ретикулоцита. Что происходит дальше и как именно строится молекула гемоглобина в ретикулоцитах, пока еще не выяснено...

Заметим, что кональбумин, содержащийся в яичном белке, играет роль антимикробного фактора и защищает куриные яйца от порчи. Дело в том, что, энергично соединяясь с железом, содержащимся в микроорганизмах, кональбумин прекращает их жизнедеятельность. Так природа экономно использует одно и тоже вещество, применяя его для решения множества разнообразных задач.

Гемэритрин. Химические машины, работающие в организмах, не всегда были такими, какими их сейчас видят биохимики в высокоорганизованных организмах. По мере постепенного развития и усложнения форм жизни изменялись и совершенствовались механизмы обмена веществ. В организмах некоторых беспозвоночных (например, морских червей) функции переноса кислорода выполняет соединение железа - гемэритрин, совершенно не похожее на гемоглобин и не содержащее порфиринового кольца. В этом соединении ионы железа связаны с аминокислотными остатками полипептидной цепи белка, причем для того, чтобы присоединить одну молекулу кислорода, требуется два иона железа (а в гемоглобине - один). Удалось установить, что в гемэритрине пара ионов железа окружена аминокислотными остатками гистидина (четыре остатка) и тирозина (два остатка); предполагают, что и другие аминокислоты (глутаминовая, аспарагиновая кислоты, метионин) участвуют в образовании группировки, окружающей ионы железа.

Свойства железа в таком соединении необычны: при связывании кислорода резко падает магнитная восприимчивость и изменяется окраска гемэритрина - бесцветное соединение становится розово-красным.

Применение наиболее мощных, современных методов исследования (спектроскопия Мессбауера) позволило сделать вывод, что ионы железа в активном центре гемэритрина находятся в различном положении и связаны через кислородный мостик сильным электронным взаимодействием. Возможно следующее расположение ионов железа:

Ионы железа в активном центре гемэритрина находятся в различном положении и связаны через кислородный мостик сильным электронным взаимодействием
Ионы железа в активном центре гемэритрина находятся в различном положении и связаны через кислородный мостик сильным электронным взаимодействием

Молекула кислорода, по-видимому, присоединяется к мостиковой группе. Возможно, что в результате присоединения кислорода железо(II) переходит в железо(III).

Крупная молекула гемэритрина имеет молекулярную массу около 108000 и состоит из восьми субъединиц (по два атома Fe в каждой). Биологическая роль гемэритрина заключается не только в переносах, но и в резервном хранении связанного кислорода, чем этот белок существенно отличается от гемоглобина. Гемэритрин, по-видимому, выполняет функции и гемоглобина, и миоглобина в организмах беспозвоночных.

В организмах обнаружен ряд белков, способных прочно связывать железо(III). Так, в яичном желтке содержится фосвитин, подавляющий всасывание железа при употреблении яиц в пищу. В желудочном соке найден белок, названный гастроферрином, также прочно соединяющийся с ионами железа. Биологическая роль таких белков не вполне ясна, но высказывается предположение, что они служат в качестве регуляторов поступления железа в клетки. Слишком большой приток ионов железа может оказать вредное действие на клеточные механизмы, поэтому регулирующий аппарат необходим для наиболее эффективной работы биологических машин.

предыдущая главасодержаниеследующая глава






Лабораторные бриллианты занимают всё большую долю рынка

Советы ювелирного стилиста: выбор актуальных моделей женских колец

В 1905 году на руднике «Премьер» в Южной Африке добыт самый крупный в мире алмаз - «Куллинан»

Лабораторные бриллианты становятся популярнее

В Калининграде нашли янтарь весом более 3 кг

Муассанит: ярче бриллианта и крепче сапфира

На кувейтском острове нашли 3,6-тысячелетнюю ювелирную мастерскую

Сияющий опал: 10 удивительных фактов о самом красивом драгоценном минерале

Модный тренд 1950-х: ювелирные украшения, которые приклеивали к телу

Ювелирный этикет ношения колец: правила, которые необходимо соблюдать

Странные гигантские алмазы приоткрывают тайну состава Земли

Что хранится в королевской шкатулке?

Работу хабаровского ювелира приняли в постоянную экспозицию Эрмитажа

В Болгарии найден древний амулет из Китая



Rambler s Top100 Рейтинг@Mail.ru
© Карнаух Лидия Александровна, подборка материалов, оцифровка; Злыгостева Надежда Анатольевна, дизайн;
Злыгостев Алексей Сергеевич, разработка ПО 2008-2017
При копировании материалов проекта обязательно ставить ссылку на страницу источник: 'IzNedr.ru: Из недр Земли'