предыдущая главасодержаниеследующая глава

Воздух, которым мы дышим. О жизни зеленого царства, о лесах, обращенных в камень, и кислороде-убийце

Как известно, наша планета окружена газовой оболочкой - атмосферой. Атмосфера Земли представляет собой смесь нескольких газов. Главенствующую роль среди них играют азот, кислород и аргон. На долю азота приходится около 3/4 объема всей атмосферы, кислород составляет приблизительно 1/5, аргон - около 1/100. Подчиненное значение в составе воздуха имеют углекислый газ и пары воды. Есть в атмосфере и другие газы, но они содержатся в ничтожных количествах.

Состав атмосферы
Газ Химическая
формула
Содержание
в атмосфере, %
Азот N 78,09
Кислород O2 20,95
Аргон Ar 0,93
Углекислый газ CO2 0,03
Пары воды H2O До 4
Водород H2 0,001
Гелий He 0,0005
Озон O3 0,000007

Газовый состав атмосферы, на первый взгляд, кажется постоянным. Но он не всегда был таким, как сейчас. С помощью различных методов исследования достоверно установлено, что на протяжении истории Земли соотношение газов, входящих в состав воздуха, сильно изменялось.

В современной атмосфере первое место занимает азот, на втором месте стоит кислород, на третьем - аргон, на четвертом - углекислый газ. Но если бы мы могли перенестись на миллионы и миллиарды лет назад, перед нами предстала бы совершенно иная картина. В прошлые геологические периоды атмосфера содержала в сотни раз больше углекислого газа, чем ныне. Зато кислорода было мало. И чем дальше в глубь истории Земли, тем больше углекислого газа было в составе воздуха.

Правда, есть предположения, что первичная атмосфера состояла в основном из метана и аммиака. Но расчеты показывают, что и в этом случае химические процессы неизбежно должны были привести к замещению этих газов азотом и диоксидом углерода (СО2).

4 млрд. лет назад кислород, по-видимому, почти совсем отсутствовал в атмосфере, а первое место по объему занимал углекислый газ. Затем кислород стал постепенно накапливаться в воздухе, а углекислого газа становилось все меньше и меньше, пока, наконец, атмосфера Земли не приобрела свой нынешний состав. Этому в значительной степени способствовало развитие на Земле зеленой растительности.

Молекула углекислого газа состоит из одного атома углерода и двух атомов кислорода. Растения в процессе питания поглощают из воздуха углекислый газ и расщепляют его на углерод и кислород. Благодаря наличию в листьях зеленого вещества - хлорофилла - растения могут под действием солнечной энергии усваивать взятый из воздуха углерод и образовывать органические вещества. Эти вещества остаются в теле растений, а кислород выделяется обратно в атмосферу.

Процесс, в результате которого углекислый газ преобразуется в органическое вещество, получил название фотосинтеза. При фотосинтезе зеленые растения выделяют в атмосферу громадное количество кислорода, спасая современные города от удушья и придавая лесному воздуху его живительную свежесть.

Если подсчитать, сколько кислорода освобождается растениями в ходе фотосинтеза, то окажется, что вся растительность земного шара (включая водоросли) ежегодно выделяет в атмосферу 430 млрд. т кислорода.

Подобно всем другим живым организмам, растения не только питаются, но и дышат. При дыхании они поглощают кислород и выдыхают углекислый газ. Процессы фотосинтеза могут протекать только под действием солнечного света. Поэтому растения способны выделять кислород лишь в дневное время, причем в освещенную часть суток они настолько интенсивно поглощают углекислый газ для питания, что дыхание у них становится совершенно незаметным. Зато ночью наблюдается обратное явление: зеленые листья начинают в большом количестве выдыхать углекислый газ, поглощая кислород воздуха. По этой причине и не рекомендуется спать ночью в закрытом помещении, в котором много комнатных растений, так как при отсутствии вентиляции в комнате может скопиться опасное для человеческого организма количество углекислого газа.

Для питания растениям требуется очень много углекислого газа. Они поглощают 590 млрд. т этого газа в год, очищая тем самым воздух. Но при дыхании выделяется углекислого газа значительно меньше. И разница между поглощенным и выдохнутым углекислым газом используется растением для строительства своего организма.

Однако проходит какое-то время, и растение погибает. Оно начинает гнить, разлагаться и вскоре от него не остается ничего, кроме горстки минеральных солей. Это значит, что все атомы углерода, из которых был построен организм растения, соединились с кислородом воздуха и вновь образовали углекислый газ; получилось то же самое количество углекислого газа, которое было некогда изъято живым растением из атмосферы.

Долгое время считалось, да и сейчас некоторые исследователи придерживаются такой точки зрения, что атмосфера Земли очистилась от углекислого газа и обогатилась кислородом благодаря "асимметрии" процесса дыхания и газового питания растений. Но уже в середине прошлого века появились серьезные возражения против этой гипотезы.

Если подсчитать, сколько углекислого газа было поглощено растением в результате фотосинтеза и сколько его было выделено в сумме при дыхании живого растения и разложении уже погибшего, то окажется, что эти величины будут равны между собой. Точно так же обстоит дело и с кислородом: при фотосинтезе его выделяется ровно столько, сколько в сумме используется для дыхания живого растения и идет на окисление после его гибели.

Тем не менее кислород все-таки постепенно накапливается в атмосфере. Почему же это происходит? Оказывается, не всегда после смерти растения углерод, входивший в состав его тканей, возвращается в атмосферу. Иногда погибшие растения попадают в такие условия, где доступ кислорода к ним бывает затруднен или вообще невозможен. Например, стволы деревьев могут упасть на дно озера и покрыться толщей глинистых наносов. В подобных случаях отмершие растения не гниют, а либо обугливаются, либо испытывают целый ряд других сложных химических преобразований, в результате которых получаются залежи каменного угля, торфа и других горючих полезных ископаемых.

Если провести, например, химический анализ каменного угля, то мы увидим, что эта порода состоит почти целиком из чистого углерода. Значит, кислород, который после гибели растения должен был соединиться с атомами углерода, не попал в круговорот и остался в атмосфере.

Академик Владимир Иванович Вернадский заметил, что количество углерода, содержащегося в горючих полезных ископаемых и известняковых породах, соответствует количеству свободного кислорода в атмосфере. Это дает возможность предположить, что накопление кислорода в атмосфере зависит от накопления горючих ископаемых, или, как их называют геологи, каустобиолитов.

Кислород начал накапливаться в атмосфере приблизительно 4 млрд. лет назад. Многие данные свидетельствуют о том, что примерно 700-800 млн. лет назад количества кислорода и углекислого газа в атмосфере, по-видимому, были равны между собой. Последующий отрезок времени, охватывающий геологическую историю Земли от кембрийского до четвертичного периода, характеризуется образованием в земной коре толщ каустобиолитов.

В конце 30-х годов ленинградский ученый, академик Павел Иванович Степанов составил интересную таблицу, в которой было показано, сколько каменного угля отлагалось на протяжении каждого геологического периода. Он установил, что накопление каменного угля происходило неравномерно. Периоды, для которых характерно образование большого количества залежей этой породы, чередуются с длительными отрезками времени, когда отложение ископаемых углей было ничтожно малым. Всего в истории Земли наблюдаются три максимума угленакопления - три эпохи, когда каменный уголь отлагался в толще земной коры особенно интенсивно.

Первая эпоха угленакопления охватывает середину и конец каменноугольного и весь пермский период. За это время образовалось около 40% всех известных запасов ископаемых углей. Вторая эпоха совпадает с юрским периодом и раннемеловой эпохой, когда отложилось 5% всей массы каменного угля. Наконец, третий максимум угленакопления, начавшийся в меловом периоде, продолжился в палеогене и неогене. За этот отрезок времени отложилось более половины известного на земном шаре количества угля. Зато в остальные периоды образование угольных залежей происходило значительно слабее.

Десять лет спустя после выхода в свет работы Степанова советские ученые провели подсчеты, в результате которых выяснилось, что отложение других горючих ископаемых приблизительно подчиняется той же закономерности. Было установлено, что на протяжении палеозойской эры образовалось около 40, в мезозое - 10 и в кайнозое - 50% всех подсчитанных запасов каустобиолитов.

Но если накопление кислорода в атмосфере действительно зависит от формирования залежей горючих ископаемых, то значит, и кислород накапливался в воздухе не равномерно, а скачкообразно. И чем больше горючих ископаемых отлагалось на протяжении того или иного периода, тем больше углекислого газа изымалось за это время из атмосферы и тем больше кислорода должно было оставаться в воздухе.

Исходя из этого предположения можно составить график, на котором будет изображено изменение сботношения между кислородом и углекислым газом в атмосфере на протяжении истории Земли.

В настоящее время в атмосфере содержится 1500000 млрд. т кислорода. Для освобождения такого количества кислорода необходимо, чтобы из воздуха было изъято приблизительно 2060000 млрд. т углекислого газа. Можно предположить, что это количество углекислого газа и было первоначально в атмосфере.

Общепризнано, что в значительных количествах кислород появился в атмосфере около 2,5 млрд. лет назад. Горные породы, имеющие возраст около 2 млрд. лет, уже несут признаки сравнительно высокоорганизованной жизни. Таковы, например, сине-зеленые водоросли и простейшие формы грибов, найденные в безжелезистых кремнистых породах Южного Онтарио (Канада).

Минимальное содержание кислорода, при котором возможна жизнь воздуходышащих организмов, равно 1,5-2%. Зная это, можно допустить, что в такой обстановке и существовали обитатели Земли 2 млрд. лет назад. Если принять, что компоненты воздуха вели себя как идеальные газы, и если считать количество азота в атмосфере величиной постоянной, то для достижения парциального давления кислорода 2% в атмосферу должно было поступить 116 000 млрд. т кислорода в результате изъятия из нее 165000 млрд. т углекислого газа.

До начала кембрийского периода увеличение количества кислорода в связи с усилением фотосинтеза, очевидно, протекало по возрастающей кривой. На фоне этого возрастания фиксируется крупный скачок в изменении соотношения между кислородом и углекислым газом, произошедший 700-800 млн. лет назад. По-видимому, с этого времени кислород стал преобладать над диоксидом углерода. Появление в позднем докембрии представителей животного мира может косвенным образом свидетельствовать в пользу такого предположения.

Последующий этап геологической истории Земли характеризуется ступенчатыми изменениями состава атмосферы. Эти изменения пропорциональны накоплению в земной коре горючих ископаемых, и наиболее резкие из них приурочены к тем периодам, на протяжении которых образование каустобиолитов достигало наибольшей интенсивности, т. е. к каменноугольному, юрскому, меловому, палеогеновому и неогеновому периодам.

В наши дни хозяйственная деятельность человека существенно нарушает ход природных процессов и приводит к возрастанию количества углекислого газа в атмосфере. Однако на расчетах для минувших геологических эпох это не сказывается.

А теперь вновь обратимся к палеонтологии. Биологи и палеонтологи широко используют старинный принцип составления родословных. Исследователи рисуют "родословное дерево", по которому можно проследить происхождение и развитие той или иной группы животных или растений. Каждому известно, например, родословное дерево позвоночных. В упрощенном виде оно выглядит совсем несложно. От рыб произошли земноводные.

Земноводные дали начало пресмыкающимся. Пресмыкающиеся явились родоначальниками птиц и млекопитающих.

Из класса млекопитающих выделилось высшее существо - человек.

Ветви или, вернее, стволы этого генеалогического дерева неодинаковы по толщине. Это не случайно. Палеонтологами подсчитано, сколько видов древних животных встречено в отложениях каждого периода. Там, где их много, соответствующий ствол утолщается, а где мало, он вытягивается в тонкий стебель.

Не подлежит сомнению, что атмосфера имеет громадное значение для появления и развития жизни на Земле. Без нее не могли бы существовать ни животные, ни растения. Животные очень чутко реагируют на все изменения окружающей среды. Поэтому, если в атмосфере действительно происходили циклические изменения газового состава, они неизбежно должны были повлечь за собой перемены в животном мире.

Из опытов, проведенных над современными животными, известно, что более высокоразвитые организмы чувствительнее к колебаниям состава воздуха, чем организмы менее сложные, а долгоживущие существа чувствительнее, нежели недолговечные. И неожиданно намечается новое интересное решение палеобиологического вопроса.

Если приложить к родословному дереву позвоночных график, на котором показано изменение газового состава атмосферы во времени, можно увидеть, что линии, характеризующие вымирание или расцвет различных групп животного мира, соответствуют ходу кривой, показывающей увеличение содержания кислорода в атмосфере.

Напрашивается вывод: вымирание больших групп древних животных непосредственно связано с изменением газового состава воздуха. И это, конечно, касается не только динозавров. По-видимому, изменение состава атмосферы сыграло свою роль в эволюции всех классов позвоночных, будь то млекопитающие, земноводные или даже рыбы. В пользу этой гипотезы имеется немало доводов. О ее справедливости свидетельствуют анализ скелетных тканей вымерших организмов, закономерности эволюции дыхательного аппарата и системы кровообращения древних животных, характер биохимического режима тканей и особенности эмбрионального развития представителей современного животного мира. Но и эта гипотеза ни в коей мере не может считаться всеобъемлющей.

Бесспорно, что на вымирание и прогресс организмов определенное влияние оказали и борьба за существование, и местные похолодания, и образование новых горных хребтов, и изменения режима водоемов. Но какую роль сыграла каждая из этих сил - пока остается невыясненным.

Не исключена возможность, что на развитие органического мира повлияло и увеличение содержания в гидросфере дейтерия - тяжелого изотопа водорода. Сведения, которыми располагает геохимия, свидетельствуют о том, что содержание дейтерия в воде неуклонно повышается. Возможно, удастся найти доказательства, что и этот процесс на протяжении геологической истории ступенчато менял свою скорость.

Можно считать доказанным, что внезапные космические катастрофы не могут быть причиной эволюционного преобразования органического мира всей планеты. Тем не менее и они в состоянии сыграть определенную роль на общем фоне направленной эволюции.

В 1979 г. лауреат Нобелевской премии профессор Луис Альварес (по специальности - физик) и группа ученых Калифорнийского университета изучали в Италии химический состав горных пород, сформировавшихся в конце мелового и в начале палеогенового периодов. В отложениях, разделяющих мезозойские и кайнозойские образования, они обнаружили повышенную концентрацию редких химических элементов. Особенно интересным оказался пласт розоватого известняка, в нижней части которого содержались остатки микроорганизмов мелового, а в верхах - палеогенового возраста.

Между этими палеонтологически охарактеризованными слоями располагался тонкий (не более 1 см) прослои глины, в котором было установлено аномально высокое содержание иридия. Количество этого металла в глинистом пропластке более чем в 30 раз превышало его содержание в окружающем известняке.

Известно, что иридии мало распространен в земных породах, но довольно часто встречается в космической пыли и в некоторых типах метеоритов. Поэтому Альварес объяснил эту аномалию как результат столкновения Земли с каким-то космическим телом.

В последующие годы геохимические исследования пограничных отложений мела и палеогена были проведены во многих странах. И в десятках мест удалось установить наличие слоя с повышенным содержанием иридия. Увеличенные концентрации этого элемента были обнаружены на территории Испании, Китая, Новой Зеландии, Гаити, США, в донных осадках Тихого и Атлантического океанов. Наиболее значительной была аномалия, выявленная в Дании. В ее пределах содержание иридия было в 160 раз выше, чем в окружающих породах.

Стало очевидно, что аномалии иридия имеют глобальный характер и, скорее всего, являются следствием космических причин. Такой причиной могло быть падение на Землю крупного метеорита или астероида. Можно даже приблизительно оценить его размеры -около 10 км в диаметре. Статистические расчеты показывают, что встреча с метеоритом такого размера вероятна один раз в 30-100 млн. лет. Энергия подобного удара столь велика, что метеорит неизбежно разрушится. Значительная часть его должна при этом превратиться в пыль, которая вследствие движения воздушных потоков равномерно распределится в атмосфере и на некоторое время может существенно уменьшить ее прозрачность. Естественно, что пока эта пылевая завеса полностью не осядет на земную поверхность, животные и растения будут испытывать некоторую нехватку солнечного света и тепловой энергии. Если же атмосфера окажется настолько насыщенной пылью, что станет почти непрозрачной, то это может привести к гибели определенной части органического мира планеты. Эти аргументы и привел Альварес для объяснения причины вымирания динозавров.

Палеонтологические данные, однако, неопровержимо говорят о том, что вымирание динозавров началось задолго до предполагаемого момента падения астероида и не могло быть его следствием. Но тем не менее открытие иридиевой аномалии на границе мела и палеогена представляет большой интерес для палеонтологии. Любопытно, что в отложениях, располагающихся в разрезе над горизонтом с повышенным содержанием иридия, действительно не встречено никаких следов существования древних ящеров. Не стало ли падение метеорита фатальным для последних представителей этой группы?

На Земле пока еще достоверно не найден кратер от упавшего в это время космического тела. Но оно вполне могло угодить в океан. В этом случае отыскать метеоритную воронку, а тем более продукты кратерных выбросов - дело почти безнадежное. Правда, известно несколько впадин, которые могли образоваться вследствие падения метеоритов в конце позднемелового времени или в самом начале палеогена. В нашей стране - это парные "кратеры" Приазовья, имеющие диаметр 25 и 3 км, а также две сближенные структуры, расположенные неподалеку от побережья Карского моря (60 и 25 км в диаметре). Похожие парные впадины известны и за пределами СССР - в Ливии. Если предположить, что все эти впадины возникли одновременно и являются следами падения осколков одного небесного тела и если принять во внимание, что за время, истекшее с начала палеогена, континенты могли переместиться, то можно даже начертить траекторию движения этого метеорита, которая завершится в море. А может быть...

На территории Украины под толщей кайнозойских отложений скрывается интересная структура - Болтышская котловина. Она имеет округлую форму, достигает 25 км в диаметре, вдается в древний кристаллический фундамент на глубину 0,5 км и по многим признакам очень напоминает ископаемый кратер невулканического происхождения. Радиологический возраст этой впадины - около 70 млн. лет. Не здесь ли упал метеорит, рассеявший в атмосфере Земли иридиевую пыль?

Геологи пытались обнаружить сходные геохимические аномалии вблизи границ и других стратиграфических подразделений. Их поиски вскоре увенчались успехом. Повышенные концентрации иридия были выявлены на рубеже эоцена и олигоцена, а также на границе пермских и триасовых отложений. Есть основания полагать, что Земля неоднократно встречалась с крупными метеоритами. За последние 2 млрд. лет на поверхность планеты выпали сотни тысяч больших небесных тел радиусом не менее 1 км, и по крайней мере несколько десятков из них оставили после своего падения кратеры более 10 км в поперечнике.

Но метеориты - не единственные космические объекты, которые могут оказать воздействие на органический мир планеты. Незадолго до Альвареса известный американский геохимик Гарольд Юри высказал предположение, что причиной гибели отдельных групп организмов (имелись в виду те же самые динозавры) могло быть столкновение Земли с огромной (массой в миллиарды тонн) кометой. При этом должно было произойти разогревание атмосферы, которое могло оказаться гибельным для многих живых существ. Кроме того, если бы это космическое тело упало в океан, то воды его были бы отравлены солями синильной кислоты, образовавшейся из цианидов, которые есть в составе вещества кометы.

Таким образом, столкновения Земли с крупными космическими телами также могут рассматриваться в ряду многих факторов, влиявших на отдельные события в истории жизни на Земле. И хотя эволюция органического мира совершается постепенно и представляет собой направленный процесс, закономерности которого не могут быть объяснены мгновенными воздействиями подобных случайных катастроф, изучение катастрофических актов в геологической истории представляет большой научный и практический интерес. Поэтому в 1983г. ЮНЕСКО и Международный союз геологических наук утвердили специально посвященный исследованию этой проблемы международный проект "Редкие события в геологии". В работе по этому проекту принимают участие ученые СССР, США, Великобритании, Франции, Швейцарии, Китая и других стран.

Материалов, по которым в той или иной мере можно проследить историю развития жизни на Земле, собрано много. Однако до сих пор еще никто не создал универсальной теории о причинах всех изменений, происходивших в животном и растительном мире нашей планеты. Эти проблемы по сей день ждут своего исследователя. Необходимы совместные усилия многих наук: геологии, палеонтологии, геофизики, зоологии, ботаники, зоогеографии (науки, занимающейся изучением географического распространения животных), фитогеографии (науки о пространственном размещении растений), химии, физики, генетики, климатологии, астрономии. Только обобщив данные всех этих отраслей знания, можно будет создать достоверную теорию, которая прольет свет на многие до сих пор темные страницы эволюции жизни.

Но мысль о том, что развитие органического мира планеты подчинено строгим циклам, уже сегодня дает нам возможность подойти к построению конкретных схем, на основании которых можно пытаться установить абсолютную продолжительность геологических периодов, опираясь на сведения о существовании представителей различных групп животных и выявленные закономерности формирования пластов горных пород, вмещающих останки вымерших организмов.

предыдущая главасодержаниеследующая глава






Лабораторные бриллианты становятся популярнее

В Калининграде нашли янтарь весом более 3 кг

Муассанит: ярче бриллианта и крепче сапфира

На кувейтском острове нашли 3,6-тысячелетнюю ювелирную мастерскую

Сияющий опал: 10 удивительных фактов о самом красивом драгоценном минерале

Модный тренд 1950-х: ювелирные украшения, которые приклеивали к телу

Ювелирный этикет ношения колец: правила, которые необходимо соблюдать

Странные гигантские алмазы приоткрывают тайну состава Земли

Что хранится в королевской шкатулке?

Работу хабаровского ювелира приняли в постоянную экспозицию Эрмитажа

В Болгарии найден древний амулет из Китая



Rambler s Top100 Рейтинг@Mail.ru
© Карнаух Лидия Александровна, подборка материалов, оцифровка; Злыгостева Надежда Анатольевна, дизайн;
Злыгостев Алексей Сергеевич, разработка ПО 2008-2017
При копировании материалов проекта обязательно ставить ссылку на страницу источник: 'IzNedr.ru: Из недр Земли'