предыдущая главасодержаниеследующая глава

Почему планеты асимметричны

Почему планеты асимметричны
Почему планеты асимметричны

В самых различных отраслях естествознания сейчас широко используется учение о симметрии как методе познания фундаментальных закономерностей в строении и эволюции материи на всех уровнях ее организации - от физических полей и элементарных частиц до Вселенной в целом. Развитие учения о симметрии, асимметрии и диссимметрии (расстроенной симметрии) связано, прежде всего, с именами Е. С. Федорова, П. Кюри, В. И. Вернадского, А. В. Шубникова. Нас будет интересовать приложение этого учения к решению глобальных тектонических проблем. В структуре литосферы Земли отчетливо проявлены признаки симметрии и асимметрии, которые требуют своего объяснения при обосновании тех или иных геодинамических моделей. Поэтому можно говорить о тектонической симметрии и асимметрии как о важных свойствах внешних геосфер, подверженных тектоническим деформациям. Характерными примерами тектонической симметрии являются срединно-океанические хребты (или их фрагменты), рифтовые структуры, некоторые геосинклинально-складчатые зоны. Но в глобальном аспекте Земля тектонически асимметрична. Асимметрию придает ей впадина Тихого океана, занимающая на планете огромную площадь. Вполне оправдано обособление на Земле двух сегментов: Тихоокеанского и противоположного ему - Атлантического.

Возникает вопрос: в чем же причина глобальной тектонической асимметрии Земли и как эта главнейшая особенность в строении увязывается с существующими геотектоническими концепциями и с новейшими данными о строении других планет земной группы и Луны?

Глобальная асимметрия Земли обнаруживается при рассмотрении ее в географическом, океанографическом и тектоническом аспектах. Отчетливо обособляется Тихоокеанская планетарная депрессия со средней глубиной около 4 км, занимающая примерно 1/3 общей площади поверхности Земли. Она обрамлена гирляндами островных дуг и горными складчатыми системами окраин континентов. Далее в глубь континентов лежат древние платформы. С океанографических позиций могут быть вполне отчетливо выделены континентальные и океанические полушария. При этом площадь акватории Тихого океана составляет около 180 млн. км2, или половину площади всего Мирового океана. В тектоническом аспекте дно Тихого океана - это, прежде всего огромная часть планеты, лишенная так называемого гранитного слоя. Под дном Индийского океана и Атлантики такого слоя также нет (за исключением сравнительно небольших участков - микроконтинентов), но площадь безгранитной коры в целом значительно меньше.

Тектоническая асимметрия Земли, Марса и Луны. Красным показаны континентальные сегменты планет, синим - океанические сегменты
Тектоническая асимметрия Земли, Марса и Луны. Красным показаны континентальные сегменты планет, синим - океанические сегменты

Тихоокеанскую впадину обрамляет одноименный тектонический пояс. Особенностью пояса является структурная связь его крупных элементов друг с другом. Получается тектоническое кольцо, смыкающее Азию и Северную Америку с одной стороны и Австралию, Антарктиду и Южную Америку - с другой.

Интересно, что многие континентальные окраины Тихоокеанской области уже были приокеаническими зонами, по крайней мере, миллиард лет тому назад. Это относится к кордильерам Северной Америки, Восточной Австралии, Юго-Восточного Китая. Сихотэ-Алинь был зоной островных дуг и краевых морей в среднем палеозое. Что касается Анд Южной Америки, то тут приокеаническая зона выявляется для мезозоя. Любопытен и другой факт. Оказывается, что в геосинклинально-складчатых областях Тихоокеанского пояса происходит омоложение времени тектогенеза от внутренних его частей к краю океана.

Все это вместе создает впечатление об устойчивости во времени и в пространстве Тихоокеанского подвижного пояса. Но вопрос оказывается более сложным. На периферии огромной океанической впадины естественно ожидать постоянное проявление высокоактивных тектонических, магматических, сейсмических и седиментационных процессов, подобных современным. Расшифровать их для геологического прошлого удается не всегда. Основная причина - в крупных перемещениях литосферных плит. Существует мнение о дрейфе Австралии и Южной Америки на большое расстояние. Вероятно, происходило и движение Северной Америки в сторону Тихого океана. Время этих перемещений несколько различное, однако, в основном оно укладывается в рамки мезозоя и кайнозоя. Соответственно структурный план Тихоокеанского кругового пояса скомпановался в это время. Все же для полукольца, расположенного в Северном полушарии, палеотектонические реконструкции возможны вплоть до позднего докембрия. Тем самым дополнительно подчеркивается главная тектоническая асимметрия нашей планеты.

Итак, Земле свойственна глобальная структурная неоднородность. В ее пределах обособляется сегмент, включающий Тихий океан и обрамляющий его Тихоокеанский тектонический пояс, характеризующийся высокой степенью подвижности и проницаемости литосферы. И другой сегмент - где сосредоточены все древние платформы, геосинклинально-складчатые пояса (их разделяющие) и вторичные океаны. Из такого противопоставления следует, что обе эти части должны были развиваться отличными путями чрезвычайно длительное время.

Неожиданное подтверждение такому взгляду пришло в результате изучения Луны.

До того как Луна была исследована с помощью автоматических межпланетных станций, существовала гипотеза о том, что на ее обратной стороне имеется Океан Антиподов, по аналогии с Океаном Бурь видимой стороны, и в целом Луна обладает симметрией. Первые же снимки обратной стороны Луны показали, что естественный спутник Земли также асимметричен и разделяется на два различных по структуре сегмента. Полушарие, обращенное к Земле, характеризуется распространением лунных морей, тогда как на обратной стороне морей почти нет, и там простирается материковая поверхность, усеянная многочисленными кратерами.

Впадины Океана Бурь и лунных морей сконцентрированы в северной части видимого полушария. Так же, как и на Земле, они выполнены базальтами. В целом проявляется аналогия в строении впадин лунных морей и земных океанических впадин. Примечательно, что впадины на Луне занимают примерно 1/3 часть ее поверхности, что близко к соотношению Тихоокеанского и Атлантического сегментов Земли. Радиологический возраст базальтов, выполняющих впадины Луны, показывает, что на Луне глобальная тектоническая асимметрия возникла еще на ранних стадиях ее эволюции.

Гравитационные и сейсмические данные показали неоднородность в строении коры и мантии Луны. В пределах океанического сегмента мощность коры сокращена до величины порядка 60 км, тогда как для обратной стороны Луны с континентальным строением допускается толщина коры в 100-150 км. При этом мощность базальтового выполнения лунных морей оценивается величиной всего в несколько километров, что приближается к мощности базальтового слоя океанической коры на Земле. В пределах океанического сегмента Луны отмечены аномально высокие скорости продольных сейсмических волн, что можно объяснить воздыманием кровли мантии, как это имеет место на Земле под океаническими впадинами.

После получения первых фотографий обратной стороны Луны с помощью АМС "Луна-3" в 1959 г. были высказаны разные соображения о причинах асимметрии видимого и обратного полушарий естественного спутника Земли. Известный советский астроном А. А. Михайлов доказал несостоятельность гипотез, объясняющих асимметрию Луны воздействием Земли. Так, гравитационное притяжение Земли, вызывающее твердые приливы в лунной коре, на видимой стороне всего на 0,5% больше, чем на обратной стороне Луны.

Однако в прошлом, когда Земля и Луна были сближены, приливное воздействие Земли было гораздо более значительным. Расчеты показали, что при расстоянии Луны от Земли, составляющем одну треть от современного, гравитационное воздействие на видимой стороне могло быть в 10 раз больше, чем на обратном полушарии Луны, а при сокращении расстояния до одной десятой эти различия возрастали в 10 тыс. раз. Гравитационное воздействие Земли должно было способствовать созданию глобальной тектонической асимметрии с формированием океанического сегмента именно на видимой стороне.

Гравитационное воздействие Земли, несомненно, проявлялось на самых ранних стадиях формирования Луны, усиливая ее первичную неоднородность, а также образование более мощной коры на обратной стороне, что согласуется с характером гравитационного поля.

В случае связи асимметрии с развитием системы Земля - Луна следовало бы ожидать симметричного расположения морского сегмента на Луне относительно центра обращенного к Земле полушария Луны. В действительности же здесь располагается так называемый Центральный перешеек с континентальным строением, тогда как морские впадины смещены к северу. Поэтому асимметрия Луны должна быть объяснена другими, внутренними причинами, отрицающими влияние нашей планеты на глобальную структуру ее естественного спутника.

В свое время пользовалась популярностью гипотеза В. Пикеринга, которая объяснила происхождение Тихоокеанской впадины отрывом Луны. Позднейшие расчеты показали несостоятельность "гипотезы отрыва". Глобальная асимметрия свойственна и другим планетам земной группы, прежде всего Марсу, у которой нет крупных спутников типа Луны, что свидетельствует против представлений о возможной связи асимметрии с развитием системы планеты и ее спутника.

Для обоснования неоднородности в структуре Луны с выделением сегментов или блоков глобального масштаба важное значение имеют сведения о сейсмичности. Показательна концентрация эпицентров лунотрясений в зонах сочленения континентального и морского сегментов. При этом континентальный блок в юго-восточной части видимой стороны Луны практически асейсмичен. Намечаемая аналогия с распределением глубокофокусных землетрясений на Земле, сконцентрированных в Тихоокеанском периокеаническом поясе, вполне закономерна.

Что касается Марса, то в его северном полушарии развита депрессия планетарного масштаба, тогда как южное полушарие представляет собой возвышенный материк. Следовательно, и на Марсе устанавливается глобальная тектоническая асимметрия с обособлением северного океанического и южного континентального полушарий. В пределах океанического полушария Марса преобладают положительные аномалии гравитационного поля, свидетельствующие о сокращенной мощности коры.

Экваториальный пояс Марса с проявлениями вулканизма и тектонических деформаций занимает промежуточное положение между океаническим и континентальным сегментами, что позволяет сопоставлять его с Тихоокеанским поясом Земли.

Что касается Меркурия, то в настоящее время снимки получены лишь на 40% его поверхности. Однако на них вполне определенно выявляются основные особенности его тектоники. Подобно Тихоокеанской впадине Земли и обширной депрессии Океана Бурь на Луне, здесь также выделяется депрессия планетарного порядка - впадина Калорис (Море Жары).

По периферии впадины Калорис намечается серия концентрических поднятий, которые могут быть сопоставлены с лунными Кордильерами и тектоническими сооружениями Тихоокеанского пояса Земли. Экстраполируя очертания впадины Калорис на всю поверхность Меркурия, получим ее отношение ко всей площади - 1/3, т. е. те же соотношения, что и у других небесных тел.

Из вышесказанного видно, что сравнительная планетология раскрывает весьма важную общую закономерность в строении Земли, Луны, Марса и Меркурия - их структурную асимметрию. Она проявляется независимо от размеров, массы, плотности, расстояния от Солнца этих небесных тел и выражается первичной неоднородностью в распределении вещества в их верхних оболочках.

Глобальная структурная асимметрия - свойство, устойчивое во времени. Если то, что здесь сказано, справедливо в отношении Земли, то мы находим объяснение глубокому различию в истории развития ее Атлантического и Тихоокеанского сегментов. Образование континентов, их раскалывание, возникновение вторичных океанов и впадин с субокеанической корой - все это относится лишь к Атлантическому сегменту, обособленному еще при первичной дифференциации вещества. Кольцевой Тихоокеанский тектонический пояс представляет собой поверхностное выражение зоны разграничения обоих сегментов. В нем происходят весьма сложные тектономагматические процессы, обусловленные глубинным взаимодействием на разных уровнях разнородных областей тектоносферы.

Итак, на ранних стадиях формирования литосферы упомянутых здесь небесных тел возникали огромные депрессионные формы, занимающие примерно 1/3 их поверхности. Такое явление можно связать с некоторым дефицитом вещества, возникшим вследствие образования первозданных континентов. Впоследствии этот дефицит компенсировался базальтовыми излияниями. Возможно, что истоки неоднородностей восходят еще к стадии аккреции протопланетного вещества, включающего сравнительно крупные ассоциации типа планетезималей.

предыдущая главасодержаниеследующая глава






Лабораторные бриллианты становятся популярнее

В Калининграде нашли янтарь весом более 3 кг

Муассанит: ярче бриллианта и крепче сапфира

На кувейтском острове нашли 3,6-тысячелетнюю ювелирную мастерскую

Сияющий опал: 10 удивительных фактов о самом красивом драгоценном минерале

Модный тренд 1950-х: ювелирные украшения, которые приклеивали к телу

Ювелирный этикет ношения колец: правила, которые необходимо соблюдать

Странные гигантские алмазы приоткрывают тайну состава Земли

Что хранится в королевской шкатулке?

Работу хабаровского ювелира приняли в постоянную экспозицию Эрмитажа

В Болгарии найден древний амулет из Китая



Rambler s Top100 Рейтинг@Mail.ru
© Карнаух Лидия Александровна, подборка материалов, оцифровка; Злыгостева Надежда Анатольевна, дизайн;
Злыгостев Алексей Сергеевич, разработка ПО 2008-2017
При копировании материалов проекта обязательно ставить ссылку на страницу источник: 'IzNedr.ru: Из недр Земли'